
Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 4, 1996 

ON T H E  S I N G U L A R I T Y  

OF A L T E R N A T I N G  E L E C T R O M A G N E T I C  FIELDS 

IN T H E  V I C I N I T Y  OF T H E  A P E X  OF A C O N D U C T I V E  W E D G E  

V. I. Yakovlev UDC 537.8 

One problem of "technological hydrodynamics" [1] which has been actively developed recently is related 
to the noncrucible zone remelting of semiconducting materials in the alternating electromagnetic field of an 
inductor. A profound theoretical investigation of problems of heat- and mass-transfer in this process, which 
are characterized by the presence of unknown phase-transition boundaries (on which the physical properties of 
the medium are discontinuous), by the presence of free boundaries, and also by the nonlinearity of governing 
equations and boundary conditions, can be performed only by numerical methods. There are, however, some 
questions that can and must be previously studied by analytical methods. One of these questions concerning 
the behavior of alternating electromagnetic fields in the geometric-singularity region in the vicinity of the line 
of intersection of regions with different electrical conductivities of materials is discussed in the present paper. 

1. The features of the problem, the unforseen difficulties arising during its investigation, and the 
methods of overcoming them are demonstrated here by means of the simplest two-dimensional formulation. A 
conductive wedge (conductivity a) with apex angle 2a0 and a rib which coincides with the z axis is considered.- 
The wedge is placed in an alternating plane magnetic field (frequency w) which is perpendicular to the z axis. 
In ambient space a = 0, and the dielectric constant and the magnetic permeability are equal to unity. The 
characteristics of the electric and magnetic fields in the vicinity of the wedge apex both inside and outside it 
are to be determined. 

In a quasi-steady approximation the vector potential A(r, a,  t) = A(r ,  a)ei~tez describing the desired 
fields E = - ( 1 / c ) ( O A / O t )  and H = rot A is determined from the problem 

{ 1 fo r reg ion l ,  (1.1) 
AA(I'2)(r,c~) -- A(l'2)(r,a) = 0 ,  ~(1,2) = 0 for region 2; 

A(1)= A (2) , 0A(1) 0A (2} ] , A 0 ) =  A (2) ' 0A(1) 0A(2) I 
~=ao 0 - - - ~ -  Oa ~=ao a=2--a0 Oa - Oa a=2~-a0" (1.2) 

The study of the asymptotic behavior of the fields near the wedge apex does not include the 
characteristic scale of the wedge l and the boundary conditions for a distant closing surface. In Eqs. (1.1) and 
conditions (1.2), the variables A (1,2) and r are regarded as the dimensionless variables obtained using the scales 
Hol and l, respectively. The superscripts here indicate that the function belongs either to region 1 (conducting) 
or to region 2 of free space (see the Fig. 1). The dimensionless skin-layer thickness ~ = c(2x/~-a-~l) -a and 
the coefficients ~(1,2) are introduced to obtain a common form for the equation in regions 1 and 2. Note that 
boundary conditions (1.2) are written for the case where the magnetic permeability of the wedge material is 
# = 1. This is done to study the pure influence only of the conductivity on the behavior of the fields, since 
/z ~ 1 determines the character of the singularity near the apex even in a zeroth apuroximation and makes 
uninteresting the subsequent approximations which take into account the effect of conduction. 
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Fig. 1 

Taking into account the solutions rV+"e 4i(v+n)a and Jr+n(((1 - i)/6)r)e +i(v+")a for the Laplace 
equation (region 2) and the heat conductivity equation (region 1), respectively, it seems quite natural that 
the solution of problem (1.1) and (1.2) for the region of r << 1 has the form of a series in powers of r: 

A(l'2)(r, ct) = ~ rV+nB(l'2)(ct), (1.3) 
n~0 

where v is a constant which is determined as an eigenvalue that  ensures a nontrivial solution of the problem. 
Note that  expansion (1.3) is the same as Meixner's expansion [2] if the latter is free from unjustified 
complications caused by simultaneous consideration of the components of the fields E and H instead of 
a single scalar function which is A(r, (~) in the  problem under consideration. 

The s tudy shows, however, that  beginning with n = 2, expansion (1.3) cannot satisfy all boundary 
conditions (1.2), and this means that  using this expansion it is not possible to obtain reliable data even for 
the initial approximations n = 0 and n = 1. This unexpected negative result causes one to seek a possible 
extension of the method  of variable separation to obtain new solutions of the Laplace equation. 

2. The search led to the following infinite set of solutions of the Laplace equation: 

~on(r, a) = r~+"F,,(r, a). 

Here 
iv(,) 

= C.,p( )(lnr)P = 0 ,1 ,2 , . . . ) .  (2.1) 
p=0 

(The maximum number in the sum pmax -= N(n) is determined for every specific problem and generally 
depends on n.) 

Indeed, since 

N(,,) 
= r . + - - 2 {  + ( .  + n)2Cn,p(~)](ln r) p 

p=0 

iv(,,) N(,,) 
-t-n) ~ pC,,p(Inr)P-1 -4 - ~ p(p-  1)C,,p(~)(lnr)p-2},  + 2 ( v  

p=0 p=0 

where the expression in braces is a polynomial in In r, it is clear that  if we make the coefficients of all powers 
(In r)p from p = 0 to Pm~,x = N(n) vanish, we obtain A~,, = 0. Hence, the functions Cn,p(a) from (2.1) must 
satisfy the recurrent system of equations [C~,p + (v + n)2C=,p] + 2(v + n)(p+ 1)C,~,p+l + (p + 1)(p + 2)(7,,9+2 = 0 
[p = 0, 1 , . . . ,  N(n)], which are solved sequentially starting with the maximum number Pro= = N(n). This 
latter equation for C , , , ~ .  is homogeneous, and its solution is a combination of sin(v + n)~ and cos(v + n)a.  

Obviously, the sum of solutions of the type of (2.1) 
oo 

= 

n----0 

is also a solution of the Laplace equation. 

460 



series 
oo 

A(r,c 0 = ~ r "+"F . ( r , a ) ,  
n-----0 

Substituting (2.2) into the above equation, we obtain 

r I" N(,) 
v+n-2 n r ~ ~ [(Cn,p + (v + n)2Ca,p)(lnr)" + 2(v + n)pCn, . ( lnr )  p-1 

n=0  p=0  �9 

2i N(n-2) 
+ P ( p -  l l C . , p ( l n r ) ' - 2 l - - ~ h .  ~ C--2, .( lnrlP} =0-  

p=0 

Here 

In a similar manner, it i~ possible to construct a solution of the equation A A  - (2i /~2)A = 0 as the 

N(.) 
F . ( r ,  c~) = ~ C.,p(~)(ln r) p. (2.2) 

p=0 

A n = { 0  for n = 0,1, 
1 for n ~> 2. 

From this it follows that (2.2) is actually a solution of the equation considered if the angular functions 
C.,v(a ) satisfy the equations 

C" 2iA C . , .  + (~ + ~)2c. ,p] + 2(~ + ~)(p + l)C., .+~ + (v + 1)(p + 2)c . , .+2  = ~-~ . . -2 , .  

(p = 0 , 1 , . . . , N ( , ) , ,  = 0 ,1 ,2 , . . . ) .  
(2.3) 

It should be noted that the right-hand sides appear in (2.3) only beginning with n = 2, and the maximum- 
value of the subscript p in Cn-2,p is N ( n  - 2) and can be different from N(n); if N ( n  - 2) < N(n) ,  the 
right-hand sides disappear for p > N ( n  - 2). 

It was assumed in solutions (2.1) and (2.2) that the number n is either equal to zero or take positive 
integer values. It is easy to verify that there is a second infinite set of solutions of the Laplace equation: 

N(,) 
~ (2 )=rV-"cb , ( r , a ) ,  O , ( r , a ) =  ~ Dmp(c0(lnr)P (n = 0 ,1 , . . . ) ,  

p=0 

where the angular functions satisfy the system of equations 

O~,p + (v - n)2D.,p + 2(v - n)(l  + p)D.,p+1 + (1 + p)(2 + p)D.,p+2 = 0 (p = 0, I , . . . ) .  

As solutions (2.2), the solutions ~o(. 2) can be used as terms of a series for deriving a solution of the Helm_holtz 
equation. 

3. Let us use solutions of the type of (2.2) for initial problem (1.1) and (1.2). A successive examination 
of the approximations n = 0, 1 , . . .  shows that as N(n)  one should take N(n)  = [n/2], i.e., the integer part of 
n/2, and, hence, the desired regular expansion can be written as 

[.121 
AI'~(~,~) = ~ r ~+" ~ :  C(2,f)(~)(lnr)P. (3.1) 

n=0  p=0 

,-~0,2), , satisfy Eqs. (2.3); one should only supplement the right-hand sides of these The functions ~,,p ~c~) 

the factor 5 (1'2) described above and write them as (2i/,~z)AnS(1,2)C(~D2, p . _  equations by 
We assume that the region of 0 < a < r on one side of the symmetry plane of the wedge is the range 

of definition of the functions AO,2) and consider two types of symmetry about this plane: 

0a0 )  I 0A(2) I 
(a) A (1) la=0 = 0, A (2) l a= .=  0; (b) Oa c,=o a ,~=. = 0 ,  =0 .  
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In both cases the coeff• of expansion (3.1) satisfy system (2.3) with corrected right-hand sides and the 
boundary conditions 

d~O) d~(2) 
u(,,p)t 0), ~ ( a 0 ) =  da n~pt ] 

d,",O) dC (2) dpO) dr,(2) 

which follows from (1.2) for (a) or (b) types of symmetry, respectively. 
Let us consider the problem with symmetry (b). The zeroth term of expansion (3.1) is defined by the 

v2C (1'2) = 0 and the uniform boundary conditions (3.2b). A nontrivial homogeneous equation d 2 C~]; 2)/da 2 + 0,0 
solution for the problem exists for values of v that satisfy the equation 

Det(v) = sin v~r = 0. (3.3) 

The minimum nonnegative eigenvalue v, = 0, and, hence, the corresponding solution has the form 
C~Id2)(a) = t0cos v,a = to (to is a constant which is the same for regions 1 and 2). 

Since v = v, + 1 satisfies Eq. (3.3), the term of series (3.1) corresponding to the number n = 1 also 

has the nontrivial solution C[~d 2) = tl cos(u, + 1)a, which describes the uniform magnetic field perpendicular 
to the wedge symmetry plane with a dimensionless quantity specified by the indeterminate constant tl. 

Note that these results are also obtained from expansion (1.3). However, in this case, they can hardly 
be regarded as reliable since the next terms ( n )  2) of expansion (1.3) cannot satisfy the boundary conditions. 

The effect of conductivity starts to manifest itself beginning with the number n = 2. The corresponding 
term in (3.1) 

A l'2)(r, = + r) (3.4) 

has a component with a logarithmic factor, and precisely this factor determines the character of the singularity 
in the vicinity of the apex of the conductive wedge. The angular functions from (3.4) satisfy Eqs. (2.3) which 
is written for n = 2, p = 0 and 1 as 

d2C~]~ 2 + (v, + 2)2C~1d 2) + 2(v, + 2)C~I~2) = ~2Co,o(a)6(1'2); (3.5) 

d2 C2,1 
da---- 5- + (u, + 2)2C2,1 = 0. (3.6) 

Since Det(v, + 2) = 0, the homogeneous Eq. (3.6) admits the nontrivial solution C~1~2)(a) = t2,1 cos(v, + 2)a, 
which satisfies boundary conditions (3.2b) for an arbitrary constant t23 which enters into the solution of 

the inhomogeneous equation (3.5). Only owing to this are the functions C~Id 2) able to satisfy the boundary 
conditions. The calculation result is as follows: 

2i to C(U = t(1) cos(v, + 2)a sin(v, + 2)a + 5,0 2,0 - t2,,a 6 2 4(v, + 1)' 

C(2) = t[2,~ cos(u, + 2)a + t2,,(~r - a) sin(u. + 2)a. 2,0 

Here the coefficients t~l,~ 2) and t2,1 are expressed in terms of t0 as 

2i to sin(u, + 2)a0, t (2) ~(1) 2i to cos(u, + 2)a0. 
t2,1 : fi4~r(v, + I) 2,0 - "2,0 = 62 4(u, + 1) 

Hence, the function C2,1(a) is uniquely determined by the constant to of the zeroth approximation whereas 

C~Id2)(a) are defined with accuracy up to the arbitrary components cos(v, + 2)a, since boundary conditions 

(3.2b) impose restrictions not on the constants t~l,~ 2) but only on their difference. 
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[Actually, there is a common result for all n which follows from Eqs. (2.3) and boundary conditions 

(3.2b): the functions C(1,~2)(a) are determined with accuracy up to the additive function tn,ocos(u, + n)a, 
where t,~,0 is an arbitrary (the same for regions 1 and 2) constant.] Thus, the obtained solution contains a set 
of free parameters which includes the coefficients to and tl of the zeroth and first terms of the expansion, and 
also one of the two coefficients t(Dn,0 or t (2)n,0 of cos(u, + n)(a) in the expressions for CO,~2)(a) for each subsequent 
term n >/2 of the expansion. These free constants are determined only by solution of the full problem. 

Since the character of the singularity of the electromagnetic fields at the wedge apex due to its 
conductivity is mainly determined by the second term of the expansion, the expressions for the subsequent 
terms are not given here. It follows from expression (3.4) that the above-mentioned singularity consists in the 
appearance of the infinite derivatives OH~,/Or and OHr/Or at the point r = 0, while the fields Ha and Hr are 
continuous at this point. (Note that in [3] the eigenvalue g = 0 was not taken into account, which led to the 
invalid conclusion that singularities are absent.) 

In the problem with the (a)-type symmetry, the minimum eigenvalue equals unity (u. = 1). Therefore, 
the zeroth and first terms of expansion (3.1) subject to boundary conditions (3.2a) have the form 

A~l'~)(r, a) = t0r sin u , a ,  m~X'2)(r, o~) = tl r2 sin(u. + 1)a. 

In a second approximation (taking into account the wedge conductivity), we have 

a~ TM = r3(C~l{~2)(a) + C2,1(ot)lnr), 

where the logarithmic term appears with the factor r 3, making the solution free from the singularities described 
above. Obviously, in the general case, a superposition of solutions with the above-mentioned two types of 
symmetry holds. 

Thus, the alternating electromagnetic fields in the vicinity of the line of intersection of regions with" 
different conductivities are described by solutions of the type of (3.1). Therefore, in numerical studies of the 
full magnetohydrodynamic problem with phase transitions in which the conductivity has a discontinuity, a 
numerical scheme for the electrodynamic part of the problem should be developed with allowance for the weak 
singularities determined by the given solution. 

The work was supported by the Russian Foundation for Fundamental Research (Grant No. 94-01-00- 
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